Pnemonia Detection Using Resnet 50
Introduction:
One such architecture is called ResNet-50. ResNet-50 is a convolutional neural network (CNN) that excels at image classification. It's like a highly trained image analyst who can dissect a picture, identify objects and scenes within it, and categorize them accordingly.
Watch In YOUTUBE 😊👇
https://www.youtube.com/watch?v=ZRclV8xclM8
CODE AND DATASET
from fastai import *
from fastai.vision import *
from fastai.metrics import error_rate
import os
import pandas as pd
import numpy as np
from pathlib import Path
from fastai.vision.all import *
x = 'C:/Users/Arunnachalam/Downloads/a/pnemonia'
path = Path(x)
path.ls()
np.random.seed(40)
data_block = DataBlock(
blocks=(ImageBlock, CategoryBlock), # For image classification
get_items=get_image_files, # Get all images in the path
splitter=RandomSplitter(valid_pct=0.2, seed=40), # 20% validation split
get_y=parent_label, # Use folder names as labels
item_tfms=Resize(224), # Resize images
batch_tfms=aug_transforms() # Apply data augmentations
)
dls = data_block.dataloaders(path, bs=128) # Set batch size
# Show a batch of images to verify loading
dls.show_batch(max_n=9, figsize=(7, 6))
atOptions = { 'key' : 'ce58cd8ee73c2a7f1378c0c62e645d01', 'format' : 'iframe', 'height' : 90, 'width' : 728, 'params' : {} }; learn = cnn_learner(dls, resnet50, metrics=error_rate)
learn.fine_tune(4)
# Interpret the model results
interp = ClassificationInterpretation.from_learner(learn)
# Plot the confusion matrix
interp.plot_confusion_matrix(figsize=(7,7))
# Load an image and make a prediction
img_path = 'IM-0001-0001.jpeg' # Path to your image
img = PILImage.create(img_path) # Open image with PILImage.create
# Predict the class of the image
pred_class, pred_idx, outputs = learn.predict(img)
print(f"Predicted class: {pred_class}")
LINK TO DATASET 😊👇
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
No comments:
Post a Comment