Face recognition is a computer vision technology that focuses on identifying and verifying a person's face. It's utilized in various fields, including security systems, payments, and social media tagging. The process involves analyzing and comparing patterns based on facial features, such as the eyes, nose, and mouth.
Watch on YOUTUBE
DETECTOR.PY CODE
import cv2 import numpy as np import sqlite3 faceDetect=cv2.CascadeClassifier('haarcascade/haarcascade_frontalface_default.xml'); cam=cv2.VideoCapture(0); def insertOrUpdate(Id,Name,Age,Gen): conn=sqlite3.connect("FaceBase.db") cmd="SELECT * FROM Peoples WHERE ID="+str(Id) cursor=conn.execute(cmd) isRecordExist=0 for row in cursor: isRecordExist=1 if(isRecordExist==1): # cmd="UPDATE Peoples SET Name="+str(Name)+"WHERE id="+str(Id) conn.execute("UPDATE Peoples SET Name=? WHERE id=?", (Name,Id,)) conn.execute("UPDATE Peoples SET Age=? WHERE id=?",(Age, Id)) conn.execute("UPDATE Peoples SET Gender=? WHERE id=?", (Gen,Id,)) else: # cmd="INSERT INTO Peoples(id,Name,Age,Gender) Values("+str(Id)+","+str(Name)+","+str(Age)+","+str(Gen)+")" conn.execute("INSERT INTO Peoples(id,Name,Age,Gender) Values(?,?,?,?)", (Id, Name, Age, Gen)) # cmd2="" # cmd3="" conn.commit() conn.close() Id=input('Enter User Id:') name=input('Enter User Name:') age=input('Enter User Age:') gen=input('Enter User Gender:') insertOrUpdate(Id,name,age,gen) sampleNum=0 while(True): ret,img=cam.read(); gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) faces=faceDetect.detectMultiScale(gray,1.3,5); for(x,y,w,h) in faces: sampleNum=sampleNum+1; cv2.imwrite("dataSet/User."+str(Id)+"."+str(sampleNum)+".jpg",gray[y:y+h,x:x+w]) cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) cv2.waitKey(400); cv2.imshow("Face",img); cv2.waitKey(1); if(sampleNum>20): break; cam.release() cv2.destroyAllWindows()
TRAINER.PY CODE
import os
import cv2
import numpy as np
from PIL import Image
recognizer = cv2.face.LBPHFaceRecognizer_create()
path = "dataset"
def get_images_with_ids(path):
image_paths = [os.path.join(path,f) for f in os.listdir(path)]
faces = []
ids = []
for single_image_path in image_paths:
faceImg = Image.open(single_image_path).convert("L") #greyscale luminance
faceNp = np.array(faceImg, np.uint8)
id = int(os.path.split(single_image_path)[-1].split(".")[1])
print(id)
faces.append(faceNp)
ids.append(id)
cv2.imshow("training", faceNp)
cv2.waitKey(10)
return np.array(id
DETECTOR.PY CODE
import cv2
import numpy as np
import os
import sqlite3
facedetect = cv2.Cascade........
FULL CODE WITH SOURCES 😃👇
https://tvi.la/facesqliteesourcecode
FOLLOW US :
1.FREETECH YOUTUBE CHANNEL →
https://www.youtube.com/@FREETECH-xu1ob
SUPPORT ME 😟
FREE C++ SKILLSHARE COURSE
FREE C SKILLSHARE COURSE
All Courses 😃👇
https://linktr.ee/Freetech2024
All Products 😃👇
https://linktr.ee/rockstararun
HP Laptop 🤩👇
Asus Laptop 🤩👇
No comments:
Post a Comment