INTRODUCTION
Natural language processing (NLP) is a machine learning technology that gives computers the ability to interpret, manipulate, and comprehend human language.
Watch On Youtube
Complete Code 😃👇
from nltk.util import pr
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
import re
import nltk
stemmer = nltk.SnowballStemmer("english")
from nltk.corpus import stopwords
import string
stopword=set(stopwords.words('english'))
data = pd.read_csv("twitter.csv")
print(data.head())
data["labels"] = data["class"].map({0: "Hate Speech",
1: "Offensive Language",
2: "No Hate and Offensive"})
print(data.head())
data = data[["tweet", "labels"]]
print(data.head())
def clean(text):
text = str(text).lower()
text = re.sub('\[.*?\]', '', text)
text = re.sub('https?://\S+|www\.\S+', '', text)
text = re.sub('<.*?>+', '', text)
text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
text = re.sub('\n', '', text)
text = re.sub('\w*\d\w*', '', text)
text = [word for word in text.split(' ') if word not in stopword]
text=" ".join(text)
text = [stemmer.stem(word) for word in text.split(' ')]
text=" ".join(text)
return text
data["tweet"] = data["tweet"].apply(clean)
x = np.array(data["tweet"])
y = np.array(data["labels"])
cv = CountVectorizer()
X = cv.fit_transform(x) # Fit the Data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
clf = Decision.........
FULL CODE AND SOURCES 😃👇
https://v2links.me/Hatespeechsourcecode
FOLLOW US :
1.FREETECH YOUTUBE CHANNEL →
https://www.youtube.com/@FREETECH-xu1ob
2. ALL PRODUCTS →
https://linktr.ee/rockstararun
3. ALL COURSES →
https://linktr.ee/Freetech2024
GAMING LAPTOP 😊🔥:
K7 ANTIVIRUS 😃👇
CONTACT ME AT FIVERR 😃👇
PRODUCTS:
THANKS FOR READING 😁😁
No comments:
Post a Comment