Wednesday, August 21, 2024

Complete Age Gender Detection Project Using DNN & OPENCV 2024


                                           INTRODUCTION

OpenCV has functionalities for running deep learning models as inference. This module lets you use pre-trained neural networks from popular frameworks like TensorFlow, PyTorch, Caffe, etc,and use those models directly in OpenCV, which we can carry out several deep learning functionalities.

Deep neural networks (DNNs) are the neural networks that have a large number of layers. There is no specific number of layers used to classify a deep neural network, but general consensus appears to be that they are neural networks with more than three hidden layers.


WATCH ON YOUTUBE 😃👇


https://www.youtube.com/watch?v=k5XYoYDSiDU





Complete Age Gender Detection Project Using DNN & OPENCV 2024




SOURCE CODE 


#import packages

import cv2
import math
import argparse


def highlightFace(net, frame, conf_threshold=0.7):
    frameOpencvDnn = frame.copy()
    frameHeight = frameOpencvDnn.shape[0]
    frameWidth = frameOpencvDnn.shape[1]
    blob = cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)

    net.setInput(blob)
    detections = net.forward()
    faceBoxes = []
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > conf_threshold:
            x1 = int(detections[0, 0, i, 3] * frameWidth)
            y1 = int(detections[0, 0, i, 4] * frameHeight)
            x2 = int(detections[0, 0, i, 5] * frameWidth)
            y2 = int(detections[0, 0, i, 6] * frameHeight)
            faceBoxes.append([x1, y1, x2, y2])
            cv2.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight / 150)), 8)
    return frameOpencvDnn, faceBoxes


parser = argparse.ArgumentParser()
parser.add_argument('--image')

args = parser.parse_args()

faceProto = "opencv_face_detector.pbtxt"
faceModel = "opencv_face_detector_uint8.pb"
ageProto = "age_deploy.prototxt"
ageModel = "age_net.caffemodel"
genderProto = "gender_deploy.prototxt"
genderModel = "gender_net.caffemodel"

MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(45)', '(50)', '(35)', '(54)', '(45)', '(38)', '(48)', '(60-100)']
genderList = ['Male', 'Female']

faceNet = cv2.dnn.readNet(faceModel, faceProto)
ageNet = cv2.dnn.readNet(ageModel, ageProto)
genderNet = cv2.dnn.readNet(genderModel, genderProto)

video = cv2.VideoCapture(args.image if args.image else 0)
padding = 20
while cv2.waitKey(1) < 0:
    hasFrame, frame = video.read()
    if not hasFrame:
        cv2.waitKey()
        break.............
............


FULL SOURCE CODE AND RESOURCES 😃👇


FOLLOW US :

1.FREETECH YOUTUBE CHANNEL →

https://www.youtube.com/@FREETECH-xu1ob

2. ALL PRODUCTS →

https://linktr.ee/rockstararun

3. ALL COURSES →

https://linktr.ee/Freetech2024


GAMING LAPTOP 😊🔥:




https://m.indiamart.com/impcat/hp-laptop.html?utm_source=freetech-xu1ob&utm_medium=affiliate&utm_campaign=0824&utm_content=1


FREE VIDEO EDITING TEMPLATES 😃👇

https://tnvalue.in/VideoEditingBundle


K7 ANTIVIRUS 😃👇






CONTACT ME AT FIVERR 😃👇





PRODUCTS:









THANKS FOR READING 😁😁















No comments:

Post a Comment

SQL INJECTION DETECTION USING RANDOM FOREST CLASSIFIER

  SQL INJECTION DETECTION USING RANDOM FOREST CLASSIFIER